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Abstract

In an Ideal Shortest Path Algorithm (ISPA), at each moment each router in a

network sends all of its tra�c down the path that will incur the lowest cost to that

tra�c. In the limit of an in�nitesimally small amount of tra�c for a particular

router, its routing that tra�c via an ISPA is optimal, as far as cost incurred by

that tra�c is concerned. We demonstrate though that in many cases, due to the

side-e�ects of one router's actions on another routers performance, having routers

use ISPA's is suboptimal as far as global aggregate cost is concerned, even when only

used to route in�nitesimally small amounts of tra�c. As a particular example of this

we present an instance of Braess' paradox for ISPA's, in which adding new links to

a network decreases overall throughput. We also demonstrate that load-balancing,

in which the routing decisions are made to optimize the global cost incurred by all

tra�c currently being routed, is suboptimal as far as global cost averaged across

time is concerned. This is also due to \side-e�ects", in this case of current routing

decision on future tra�c. The theory of COllective INtelligence (COIN) is concerned

precisely with the issue of avoiding such deleterious side-e�ects. We present key

concepts from that theory and use them to derive an idealized algorithm whose

performance is better than that of the ISPA, even in the in�nitesimal limit. We

present experiments verifying this, and also showing that a machine-learning-based

version of this COIN algorithm in which costs are only imprecisely estimated (a

version potentially applicable in the real world) also outperforms the ISPA, despite

having access to less information than does the ISPA. In particular, this COIN

algorithm avoids Braess' paradox.

1 INTRODUCTION

The problem of how to control routing across a network underlies a vast array of real-

world problems including internet routing, voice/video communication, tra�c ows, etc.

In its general form, the problem is how to optimize the ow of certain entities (e.g.,
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information packets, cars) from sources to destinations across a network of routing nodes.

Here we are concerned with the version of the problem in which \optimization" consists

of minimizing aggregate cost incurred by the entities owing to their destinations. To

ground the discussion, we will consider the case where the entities being routed are

packets.

Currently, many real-world network routing solutions to this particular problem are

based on the Shortest Path Algorithm (SPA), in which each routing node in the network

maintains estimates of the \shortest paths" (i.e., minimal total incurred costs) from it

to each of its destinations and at each moment satis�es any routing requests by sending

all its packets down that shortest path. Many algorithms exist for e�ciently computing

the shortest path in the case where the costs for traversing each component of every

path at any given time are known. In particular, there exist many such algorithms

that can be applied when node-to-node path-cost communication is available and the

costs for traversing each component are unvarying in time (e.g., Dijkstra's Algorithm

[1, 3, 9, 10]. Real-world SPA's apply such algorithms to estimated costs for traversing

each component of every path to generate their estimated shortest paths.

Consider the case where for all paths from a particular node to a particular destina-

tion, the costs that would be incurred by that node's routing all its current tra�c along

that path is known exactly to that node (the information being stored in that router's

\routing table"). Clearly if a non-in�nitesimal amount of tra�c is being routed by our

node, then in general its sending all that tra�c down a single path will not result in

minimal cost incurred by that tra�c, no matter how that single path is chosen. However

if it must choose a single path for all its tra�c, then tautologically the SPA chooses the

best such path. Accordingly, in the limit of routing an in�nitesimally small amount of

tra�c, with all other nodes' strategies being a \background", such a router's running

SPA is the optimal (least aggregate incurred cost) routing strategy for that particular

routing node considered individually.

One might hope that more generally, if the node must allot all of its tra�c to a single

path, then its choosing that path via the SPA would be the globally optimal choice

of a single path, at least in the limit of in�nitesimally little tra�c. This is not the

case though, because in using the SPA the node is not concerned with the deleterious

side-e�ects of its actions on the costs to other nodes [15, 26]. In the extreme case, as

elaborated below, if all nodes were to try to minimize their personal costs via SPA's,

then the nodes would actually all receive higher cost than would be the case under an

alternative set of strategies. This is an instance of the famous Tragedy Of the Commons

(TOC) [12].

Deleterious side-e�ects need not be restricted to extend over space; they can also

extend over time. Indeed, consider the algorithm of having all routers at a given moment

make routing decisions that optimize global cost incurred by the tra�c currently being

routed, an algorithm often called \load-balancing" (LB). By de�nition, LB avoids the
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deleterious side-e�ects over space that can result in the TOC for the costs incurred by the

tra�c currently being routed. However, due to side-e�ects over time, even conventional

LB is often suboptimal as far as global cost averaged across time is concerned. Intuitively,

one would have to use \load-balancing over time" to ensure truly optimal performance.

In this paper we are concerned with how to address these kinds of deleterious side-

e�ects, and thereby improve performance. In particular, we are interested in ways of

doing this that result in better performance than that of the ubiquitous SPA.

Now use of the SPA obviously provides no guarantees, even for personal cost of the

router using it, if the path-estimates of the nodes are incorrect. Such inaccuracy is the

rule rather than the exception in many practical applications. Typically those estimates

will be in error because node-to-node communication is not instantaneous, and therefore

routing tables may be based on out of date information. More generally though, even if

that communication were instantaneous, the cost to traverse a component of the network

may be di�erent by the time the packet arrives at that component.

In this paper we do not wish to investigate such topics, but rather to highlight the

issue of side-e�ects. Accordingly we \rig the game" in favor of the SPA by constructing

our simulations so that the �rst potential cause of routing table inaccuracy does not arise,

and the second is minimized. We do this in our experiments by using an Ideal Shortest

Path Algorithm (ISPA) which has direct access to the shortest path at each moment.

Note that this ISPA provides an upper bound on the performance of any real-world SPA.

In general, even without side-e�ects, determining the optimal solution to a ow prob-

lem (e.g., determining what the loads on each link need to be to maximize throughput

on a non-cooperative data network) can be nontractable [1, 20]. Therefore, we will con-

cern ourselves with providing good solutions that avoid the di�culties the ISPA has with

side-e�ects. It is not our aim here to present algorithms that �nd the best possible

(\load-balanced over time") solution.

We will base our solutions on the concept of Collective Intelligence. A \COllec-

tive INtelligence" (COIN) is any pair of a large, distributed collection of interacting

goal-driven computational processes among which there is little to no centralized com-

munication or control, together with a `world utility' function that rates the possible

dynamic histories of the collection [26, 25]. In this paper we are particularly concerned

with computational processes that use machine learning techniques (e.g., reinforcement

learning [14, 23, 22, 24]) to try to achieve their goal, conventionally represented as max-

imizing an associated utility function. We consider the central COIN design problem:

how, without any detailed modeling of the overall system, can one set utility functions for

the individual components in a COIN to have the overall dynamics reliably and robustly

achieve large values of the provided world utility? In other words, how can we leverage

an assumption that our learners are individually fairly good at what they do? In a

routing context, this question reduces to what goals one ought to provide to each router

so that each router's greedily pursuing those goals will maximize throughput (\incentive
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engineering"). For reasons given above, we know that the answer to this question is not

provided by SPA's goals | some new set of goals is needed.

In Section 2 we discuss the SPA's de�ciencies and in particular their manifestations

in Braess' paradox. We also demonstrate the suboptimality of load-balancing in that

section. We then present Collective Intelligence in Section 3, discuss the routing model

we will use in our experiments, and show how the theory of COINs can be applied

to that model to provide an alternative to shortest path algorithms. In Section 4 we

present simulation results with that model that demonstrate that in networks running

ISPA, the per packet costs can be as much as 32 % higher than in networks running

algorithms based on COIN theory. In particular, even though it only has access to

imprecise estimates of costs (a handicap that does not hold for ISPA), the COIN-based

algorithm almost always avoids Braess' paradox, in stark contrast to the ISPA. In that

the cost incurred with ISPA's is presumably a lower bound on that of an SPA not privy

to instantaneous communication, the implication is that COINs can outperform such

real-world SPA's.1

2 Suboptimality of Shortest Path and Load-Balancing

In this section we �rst demonstrate the suboptimality of an SPA when we have multiple

nodes making simultaneous routing decisions, where neither node knows ahead of time

the other's choice, and therefore does not know ahead of time exactly what the costs will

be. We then demonstrate that such suboptimality can hold even when only one node is

making a decision, and it knows what decisions the others have previously made. Next we

present Braess' paradox, a particularly pointed instance of these e�ects. (See [2, 7, 6, 18]

for other discussion of Braess' paradox in SPA routing.) We end by demonstrating the

suboptimality of conventional load-balancing when cost over time is what's of interest.

2.1 SPA when multiple routers are simultaneously making decisions

Perhaps the simplest example of how individual greed on the part of all nodes can lead

to their collective detriment occurs when two nodes determine that their shortest path

is through a shared link with a limited capacity, while both have a second option that

is slightly less preferable. In such a case, their using the common link degrades the

performance of both parties, since due to limited capacity the performance of that link

will quickly fall below that of their second option.

More precisely, consider the case where, given a load x, the shared link has a cost

given by x3, and where each router has a second option where the cost is given by 2x.

Acting alone, with a single packet to send, they would both send that packet through

1A brief synopsis of the COIN algorithm discussed here was presented in a space-constrained article

[26]; this paper presents full details and applies the algorithm to Braess' paradox as an illustration of

the suboptimality of the SPA.
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the shared link (cost of 1). However by both doing so, they incur a larger cost (cost of 8)

than if they had both used their second choice (cost of 4). Without knowing what each

other will do ahead of time (information not conventionally contained in routing tables),

the nodes will necessarily have mistaken cost estimates and therefore make incorrect

routing decisions. (Indeed, to have all nodes know what each other are doing ahead of

time requires the use of game theory.) In this, even in the limit of di�erentially small

packets, use of SPA will lead to a wrong routing decision.

2.2 SPA when only one router is making a decision

Consider the network shown in Figure 1. Two source routers X and Y each send one

packet at a time, with X sending to either intermediate router A or B, and Y sending

to either B or C. This type of network may arise in many di�erent topologies as a

subnetwork. Accordingly, di�culties associated with this network can also apply to

many more complex topologies.
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Figure 1: Independent decisions at the source

Let xA, xB , yB , and yC , be the packet quantities at a particular �xed time t, at A,

B, or C, and originating from X or Y , as indicated. At t, each source has one packet to

send. So each of our variables is binary, with xA+xB = yB+yC = 1. Have Vi(zi) be the

cost, per packet, at the single instant t, at router i, when the total number of packets at

that instant on that router is zi. So the total cost incurred by all packets at the time t,

G(~x; ~y), equals xAVA(xA) + (xB + yB)VB(xB + yB) + (yC)VC(yC).

In an ISPA, X chooses which of xA or xB = 1 so as to minimize the cost incurred by

X's packet alone, gX(~x) � xAVA(xA) +xBVB(xB + yB). (Real-world SPA's typically try

to approximate this by having X choose either A or B according to whether VA(0) or

VB(yB) is smaller, where those two values can be estimated via pings, for example.) In

doing this the ISPA ignores the yBVB(xB + yB) term, i.e., it ignores the \side e�ects" of

X's decision.

The right thing to do of course is instead have X minimize G(~x; ~y), or more precisely,

the components of G(~x; ~y) that depend on X. Writing it out for this case, X ought to act
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to minimize xAVA(xA)+(xB+yB)VB(xB+yB). Due to the constraint that xA+xB = 1,

this means sending down A i� VA(1) < (yB + 1)VB(yB + 1) � yBVB(yB), which di�ers

from the ISPA result in that X is concerned with the full cost of going through router

B, not just the portion of that cost that its packet receives.

In the context of this example, thisG-minimizing algorithm constitutes \load-balancing"

(LB). Note that so long as sgn[VA(0)�VB(yB)�yBV
0
B(yB)] 6= sgn[VA(0)�VB(yB)], even

in the limit of in�nitesimally small tra�c (so that xA + xB equals some in�nitesimal �),

ISPA and LB still disagree.

2.3 Braess' Paradox

Braess' paradox [2, 7, 6, 16, 18] dramatically underscores the ine�ciency of the ISPA

described above. This apparent \paradox" is perhaps best illustrated through a highway

tra�c example �rst given by Bass [2]: There are two highways connecting towns S and

D. The cost associated with traversing either highway (either in terms of tolls, or delays)

is V1+V2, as illustrated in Net A of Figure 2. So when x = 1 (a single traveler) for either

path, total accrued cost is 61 units. If on the other hand, six travelers are split equally

among the two paths, they will each incur a cost of 83 units to get to their destinations.

Now, suppose a new highway is built connecting the two branches, as shown in Net

B in Figure 2. Further, note that the cost associated with taking this highway is not

particularly high (in fact for any load higher than 1, this highway has a lower cost than

any other highway in the system). The bene�t of this highway is illustrated by the

dramatically reduced cost incurred by the single traveler: by taking the short-cut, one

traveler can traverse the network at a cost of 31 units (2 V1 + V3). Adding a new road

has seemingly reduced the traversal cost dramatically.
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Figure 2: Hex network with V1 = 10x ; V2 = 50 + x ; V3 = 10 + x

However consider what happens when six travelers are on the highways in net B. If

each node uses an ISPA, then at equilibrium each of the three possible paths contains two

travelers.2 Due to overlaps in the paths however, this results in each traveler incurring

2We have in mind here the Nash equilibrium for this problem, where no traveler (or equivalently, no
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a cost of 92 units, which is higher than than what they incurred before the new highway

was built. The net e�ect of adding a new road is to increase the cost incurred by every

traveler. This phenomenon is known as Braess' paradox.

2.4 The Suboptimality of Load-Balancing

As mentioned before, LB considers side-e�ects of current routing decisions on other tra�c

currently being routed. However because it does not consider side-e�ects of routing

decisions on future tra�c, even LB may not optimize global cost averaged across all

time, depending on the details of the system. Here we present an existence proof of this,

by explicitly constructing a situation where conventional LB is suboptimal.

Consider a system with discrete time, in which the node X under consideration must

route one packet to the (�xed) destination at each time step (cf. Section 2.2 above).

Presume further that no tra�c enters any of the nodes X sends to except for X. (So

that tra�c coming from X is the sole source of any costs associated with X's outbound

links.) Let S(t) be the number of times our node sent a packet down some link A in

the W time steps preceding t, and take s(t) = A;B to mean that the router uses link A

or B, respectively, at time t. Model queue backups and the like by having the cost to

send a packet down link A at time t be CA(S(t)=W ), and have the cost for our router

to instead send the packet down link B be CB(1 � S(t)=W ), For simplicity we assume

that both CA(:) and CB(:) are monotonically increasing functions of their arguments.

Restrict attention to nodes that work by having s(t) = A i� S(t) � k for some

real-valued threshold k. The LB algorithm will choose s(t) = A i� CA(S(t)=W ) �

CB(1 � S(t)=W ). So the LB algorithm's behavior is indistinguishable from this kind

of threshold algorithm, with k set so that CA(k=W ) = CB(1 � k=W ). (We implicitly

assume that CA(:) and CB(:) are chosen so that such a solution exists for 1 < k < W�1.)

The question is what k should be to optimize total averaged cost across time, and in

particular if that k is the same as kLB , the k that LB uses.

Now as we go from one time step to the next, the routing decision made W time steps

ago drops out of the computation of S(t), while the routing decision just made is newly

included. In general, S(t+1) = S(t)+1 if the router just used A at time t and used link

B at the time W time steps into the past. On the other hand, S(t+1) = S(t)� 1 if the

router just used B and used A W time steps ago, while S(t + 1) = S(t) if the routing

decision just made is the same as the routing decision W time steps ago. So in general,

S(t) can only change by -1, 0, or +1 as we go from one time step to the next.

Consider cases where 1 < k < W � 1, so that eventually the router must choose

an A, and at some subsequent time t� the router switches from A to B. At that time

s(t� � 1) = A and s(t�) = B. This implies that S(t� � 1) � k; S(t�) > k. De�ne the

value S(t� � 1) as k�. Note that S(t�) = k� + 1, and k � 1 < k� � k.

router) can gain advantage by changing strategies.
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Now for any time t0, if S(t0) = k�+1, s(t0+1) = B, and the only possible next values

are S(t0+1) = k� or S(t0+1) = k�+1, depending on the old decision s(t�W ) that gets

dropped out of the window. Similarly, if S(t0) = k�, s(t0+1) = A, and the only possible

next values are S(t0+1) = k� or S(t0+1) = k�+1, again depending on the old decision

being dropped. So we see that once S(t0) 2 fk�; k� + 1g, it stays there forever.

This means that because of the relationship between k and k�, in any interval of W

consecutive time steps subsequent to t�, the number of packets sent along A by router X

must be 2 (k� 1; k+1]. (Note that it is possible to send k+1 packets along A, but not

k� 1 packets. Therefore the number sent along B must be 2 [W � (k+1);W � (k� 1)).

Each time that a packet is sent along A the cost incurred is the cost of link A with

average tra�c level S(t)=W , CA(S(t)=W ). Similarly, each time the link B is chosen,

the cost incurred is CB(1 � S(t)=W ). Since S(t) 2 fk�; k� + 1g, and both CA(:) and

CB(:) are monotonically increasing, the cost for sending the packet down link A 2

(CA((k � 1)=W ); CA((k + 1)=W ], and that for sending it down link B is contained in

[CB(1� (k + 1)=W ); CB(1� (k � 1)=W )).

Now we know that the choice of A must have average frequency (across all time)

between k�=W and (k� + 1)=W . Similarly, B will have average frequency between (1�

(k� + 1)=W ) and 1� k�=W . Accordingly, the average cost is bounded above by

k� + 1

W
CA

�
k + 1

W

�
+

�
1�

k�

W

�
CB

�
1�

k � 1

W

�
; (1)

where the �rst term provides the maximum possible average cost for using link A, while

the second term independently provides the maximum possible average cost for using

link B. (Note that the actual cost will be lower since the two frequencies in this bound,

one for A and one for B, cannot both have the values indicated.) Because k�1 < k� � k

and since 1� k�1
W

= 1 + 2
W
� k+1

W
, our upper bound is itself bounded above by

k + 1

W
CA

�
k + 1

W

�
+

�
1 +

2

W
�
k + 1

W

�
CB

�
1 +

2

W
�
k + 1

W

�
: (2)

The optimal k will result in an average cost lower than the minimum over all k of the

upper bound on average cost, given in Equation 2. So the average cost for the optimal

k is bounded above by the minimum over k of this upper bound. Lable this argmin of

Equation 2 k'.

Since other values of k besides kLB result in behavior equivalent to LB, it does not

su�ce to simply test if k' = kLB . Instead let us evaluate some lower bounds in a similar

fashion to how we evaluated upper bounds. Using the average frequencies discussed

above, the average cost is bounded below by:

k�

W
CA

�
k � 1

W

�
+

�
1�

1

W
�

k�

W

�
CB

�
1�

k + 1

W

�
; (3)

where the �rst term provides the minimum possible average cost for using link A, while

the second term provides the minimum possible average cost for using link B. Again,
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because k � 1 < k� � k, the term is Equation 3 is further bounded below by

k � 1

W
CA

�
k � 1

W

�
+

�
1�

2

W
�
k � 1

W

�
CB

�
1�

2

W
�
k � 1

W

�
: (4)

In particular this bound holds for the average cost of the LB algorithm:

kLB � 1

W
CA

�
kLB � 1

W

�
+

�
1�

2

W
�
kLB � 1

W

�
CB

�
1�

2

W
�
kLB � 1

W

�
; (5)

where as before kLB satis�es CA(kLB=W ) = CB(1� kLB=W ).

By appropriate choice of CA(:) and CB(:), we can ensure that the lower bound on

the cost with the LB algorithm (Equation 5 evaluated with k = kLB) is higher than

the upper bound on the average cost incurred by the optimal algorithm (the minimum

over k of Equation 2).3 That is, the best possible average cost achieve by load balancing

will be worse than the worst average cost that could arise through the optimal routing

strategy. This establishes that LB does not engage in optimal routing.

3 COIN-based Routing

One common solution to these types of side-e�ect problems is to have particular com-

ponents of the network (e.g., a \network manager" [17]) dictate certain choices to other

nodes. This solution can incur major brittleness and scaling problems however. Another

kind of approach, which avoids the problems of a centralized manager, is to provide the

nodes with extra incentives that can induce them to take actions that are undesirable to

them from a strict SPA sense. Such incentive can be in the form of \taxes" or \tolls"

added to the costs associated with traversing particular links to discourage the use of

those links. Such schemes in which tolls are superimposed on the nodes' goals are a

special case of the more general approach of replacing the goal of each node with a new

goal. These new goals are speci�cally tailored so that if they are collectively met the

system maximizes throughput. A priori, a node's goal need have no particular relation

with the SPA-type cost incurred by that node's packets. Intuitively, in this approach,

we provide each node with a goal that is \aligned" with the global objective, with no

separate concern for of that goal's relation to the SPA-type cost incurred by the tra�c

routed by that node.

In this section, we �rst summarize the theory of such systems, which are called COl-

lective INtelligences (COIN's) [27, 25]. We then use that theory to justify an algorithm

3For example, for CA(x) = x2 and CB(x) = x, balancing the loads on A and B | setting

CA(S(t)=W ) = CB(1�S(t)=W )| results in (S(t)=W )2 = 1�S(t)=W , leading to kLB=W =
p
5�1
2

= :618.

For W = 1000, the associated lower bound on average cost (Equation 5) is :617(:617)2 +(:998� :617)2 =

:380. On the other hand, with CA and CB given as above, Eq 2 is ( k+1
W

)3 + (1+ 2
W
� k+1

W
)2. Di�erenti-

ating with respect to k and setting the result to zero leads to k0

W
= � 1

3
� 1

W
+

p
28+48=W

6
. For a window

size of W = 1000, this yields k0=W = :548, a di�erent result than kLB . Plugging into Equation 2, the

upper bound on the performance with k' is (:549)3 + (1:002 � :549)2 = :371, which is less than :380.
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that only uses limited knowledge of the state of the network (in particular knowledge

that is readily available to routers in common real data networks) to make routing de-

cisions. At each router, this algorithm uses a Memory Based (MB) machine learning

algorithm to estimate the value that a private utility (provided by COIN theory) would

take on under the di�erent candidate routing decisions. It then makes routing decisions

aimed at maximizing that utility. (We call this algorithm an MB COIN.)

3.1 The COIN Formalism

In this paper we consider systems that consist of a set of nodes, connected in a network,

evolving across a set of discrete, consecutive time steps, t 2 f0; 1; :::g. Without loss of

generality, we let all relevant characteristics of a node � at time t| including its internal

parameters at that time as well as its externally visible actions | be encapsulated by a

Euclidean vector �
�;t

with components �
�;t;i

. We call this the \state" of node � at time

t, and let �
;t
be the state of all nodes at time t, while � is the state of all node across all

time.

World utility, G(�), is a function of the state of all nodes across all time. (Note

that that state is a Euclidean vector.) When � is an agent that uses a machine learning

(ML) algorithm to \try to increase" its private utility, we write that private utility as

g�(�), or more generally, to allow that utility to vary in time, g�;� (�).

We assume that � encompasses all physically relevant variables, so that the dynamics

of the system is deterministic (though of course imprecisely known to anyone trying

to control the system). Note that this means that all characteristics of an agent � at

t = 0 that a�ects the ensuing dynamics of the system must be included in �
�;0
. For

ML-based agents, this includes in particular the algorithmic speci�cation of its private

utility, typically in the physical form of some computer code. (As elaborated in [25] the

mathematics can be generalized beyond ML-based agents.)

Here we focus on the case where our goal, as COIN designers, is to maximize world

utility through the proper selection of private utility functions. Intuitively, the idea is

to choose private utilities that are aligned with the world utility, and that also have the

property that it is relatively easy for us to con�gure each node so that the associated

private utility achieves a large value. In this paper, we restrict attention to utilities of

the form
P

t�� Rt(� ;t) for reward functions Rt (simply
P

tRt(�;t) for non-time-varying

utilities). From now on, we will only consider world utilities whose associated set of fRtg

are all time-translations of one another. In particular, as shown below, overall network

throughput is expressible this way.

We need a formal de�nition of the concept of having private utilities be \aligned"

with G. Constructing such a formalization is a subtle exercise. For example, consider

systems where the world utility is the sum of the private utilities of the individual nodes.

This might seem a reasonable candidate for an example of \aligned" utilities. However

such systems are examples of the more general class of systems that are \weakly trivial".
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It is well-known that in weakly trivial systems each individual agent greedily trying to

maximize its own utility can lead to the tragedy of the commons [12, 8] and actually

minimize G. In particular, this can be the case when private utilities are independent

of time and G =
P

� g�. Evidently, at a minimum, having G =
P

� g� is not su�cient to

ensure that we have \aligned" utilities; some alternative formalization of the concept is

needed.4

A more careful alternative formalization of the notion of aligned utilities is the concept

of \factored" systems. A system is factored at time � when the following holds for each

agent � individually: A change at time � to the state of � alone, when propagated across

time, will result in an increased value of g�;� (�) if and only if it results in an increase for

G(�) [25].

For a factored system, the side-e�ects of a change to �'s t = � state that increases

its private utility cannot decrease world utility. There are no restrictions though on the

e�ects of that change on the private utilities of other nodes and/or times. In particular,

we don't preclude di�erent a node's algorithm at two di�erent times from \working at

cross-purposes" to each other, so long as at both moments the node is working to improve

G. In game-theoretic terms, optimal global behavior corresponds to the agents' reaching

a private utility Nash equilibrium for such systems [11]. In this sense, there can be no

TOC for a factored system. As a trivial example, a system is factored for g�;� = G 8�.

De�ne the e�ect set of the node-time pair (�; �) at �, Ceff

(�;�)
(�), as the set of all

components �
�0;t

which under the forward dynamics of the system have non-zero partial

derivative with respect to the state of node � at t = � . Intuitively, (�; �)'s e�ect set is

the set of all components �
�0;t��

which would be a�ected by a change in the state of

node � at time � . (They may or may not be a�ected by changes in the t = � states of

the other nodes.)

Next, for any set � of components (�0; t), de�ne CL�(�) as the \virtual" vector formed

by clamping the �-components of � to an arbitrary �xed value. (In this paper, we take

that �xed value to be ~0 for all components listed in �.) The value of the e�ect set

wonderful life utility (WLU for short) for � is de�ned as:

WLU�(�) � G(�)�G(CL�(�)): (6)

In particular, we are interested in the WLU for the e�ect set of node-time pair (�; �).

This WLU is the di�erence between the actual world utility and the virtual world utility

where all node-time pairs that are a�ected by (�; �) have been clamped to a zero state

while the rest of � is left unchanged.

Since we are clamping to ~0, we can view (�; �)'s e�ect set WLU as analogous to the

change in world utility that would have arisen if (�; �) \had never existed". (Hence the

4Note that in the simple network discussed in Section 2.1, the utilities are weakly trivial, since

G(~x; ~y) = gX(~x) + gy(~y). This provides another perspective on the suboptimality of ISPA in that

network.
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name of this utility - cf. the Frank Capra movie.) Note however, that CL is a purely

\�ctional", counter-factual operator, in the sense that it produces a new � without taking

into account the system's dynamics. The sequence of states the node-time pairs in � are

clamped to in constructing the WLU need not be consistent with the dynamical laws

of the system. This dynamics-independence is a crucial strength of the WLU. It means

that to evaluate the WLU we do not try to infer how the system would have evolved if

node �'s state were set to ~0 at time � and the system evolved from there. So long as we

know � extending over all time, and so long as we know G, we know the value of WLU.

Assuming our system is factored with respect to private utilities fg�;�g, we want each

node to be in a state at time � that induces as high a value of the associated private

utility as possible (given the initial states of the other nodes). Assume � is ML-based

and able to achieve fairly large values of most private utilities we are likely to set it for

time � , i.e., assume that given that private utility g�;� , the rest of the components of �
�;�

are set by �'s algorithm in such a way so as to achieve a relatively high value of g�;� . So

our problem becomes determining for what fg�;� g the nodes will best be able to achieve

high g� (subject to each other's actions) while also causing dynamics that is factored for

G and the fg�;�g.

As mentioned above, regardless of the system dynamics, having g�;� = G 8� means

the system is factored at time � . It is also true that regardless of the dynamics, g�;� =

WLU
C
eff

(�;�)

8� is a factored system at time � (proof in [25]). Which of these two choices

of the fg�;�g should we use?

To answer this, note that since each agent is operating in a large system, it may

experience di�culty discerning the e�ects of its actions on G when G sensitively depends

on all the myriad components of the system. Therefore each � may have di�culty learning

from past experience what to do to achieve high g�;� when g�;� = G.5

This problem can be mitigated by using e�ect set WLU as the private utility, since

the subtraction of the clamped term removes much of the \noise" of the activity of

other agents, leaving only the underlying \signal" of how the agent in question a�ects

the utility. (This reasoning is formalized as the concept of \learnability" in [25].)

Accordingly, one would expect that setting private utilities to WLU's ought to result in

better performance than having g�;� = G 8�; � . In practice, we will often only be able to

estimate the \primary", most prominent portion of the e�ect set. However assuming that

the associated WLU is close enough to being factored, we would expect the advantage

in learnability with such a WLU to still result in better performance than would using

g�;� = G 8�; � . (See [27, 25].) Indeed, for the sake of improving learnability, often

5In particular, in the routing problem, having private rewards given by the world reward functions

means that to provide each router with its reward at each time step we need to provide it the full

throughput of the entire network at that step. This is usually infeasible in practice. Even if it weren't

though, using these private utilities would mean that the routers face a very di�cult task in trying to

discern the e�ect of their actions on their rewards, and therefore would likely be unable to learn their

best routing strategies.
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we will elect to exclude certain node-time pairs from our estimate of the e�ect set of

(�; �), even if we are sure that that are a�ected by �
�;�
. This will be the case if we

expect that the changes in G due to varying �
�;�

that are \mediated" through those

node-time pairs are relatively insigni�cant, and therefore e�ectively constitute noise for

the learning process, so that their e�ect on learnability is more important than their

e�ect on factoredness.

3.2 Model Description

To apply the COIN formalism to a network routing model, we must formally identify the

components of that model as deterministically evolving vectors �
;t
. In the model used

in this paper, at any time step all tra�c at a router is a set of pairs of integer-valued

tra�c amounts and associated ultimate destination tags. At each such time step t, each

router r sums the integer-valued components of its current tra�c at that time step to

get its instantaneous load. We write that load as zr(t) �
P

d xr;d(t), where the index

d runs over ultimate destinations, and xr;d(t) is the total tra�c at time t going from r

towards d. After its instantaneous load at time t is evaluated, the router sends all its

tra�c to the next downstream routers, in a manner governed by its routing algorithm.

We indicate such \next routers" by writing xr;d(t) =
P

r0 xr;d;r0(t) where r
0 is the �rst

stop on the path to be followed from router r to ultimate destination d. After all such

routed tra�c goes to those next downstream routers, the cycle repeats itself, until all

tra�c reaches its destinations.

In our simulations, for simplicity, tra�c was only introduced into the system (at

the source routers) at the beginning of successive waves of L consecutive time steps.

(L was always chosen to be the minimal number necessary for all tra�c to reach its

destination before the next wave of tra�c is initiated.) We use �(t) to indicate either

the integer-valued wave number associated with time t or the set of all times in that

wave, as the context indicates.

In a real network, the cost of traversing a router does not change dramatically from

one packet to the next. To simulate this e�ect, we use time-averaged values of the load

at a router rather than instantaneous load to determine the cost a packet incurs in

traversing that router. More formally, we de�ne the router's windowed load, Zr(t),

as the running average of that router's load value over a window of the previous W

timesteps: Zr(t) �
1
W

Pt
t0=t�W+1 zr(t

0) =
P

d0 Xr;d0(t), where the value of Xr;d(t) is set

by the dynamical law Xr;d(t) =
1
W

Pt
t0=t�W+1 xr;d(t

0)). (W is always set to an integer

multiple of L.) For large enoughW , using such a window means that in a typical scenario

the costs across nodes will only change substantially over time scales signi�cantly larger

than that of the individual routing decisions. The windowed load is the argument to a

load-to-cost function, V (�), which provides the cost accrued at time t by each packet

traversing the router at this timestep. That is, at time t, the cost for each packet to
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traverse router r is given by V (Zr(t)).
6 (We also introduce \dummy nodes" denoted by

V0(�) = 0 which help in translating the mathematics into the simulations. Omitting them

will have no e�ect on the simulations.) Di�erent routers have di�erent V (�), to reect

the fact that real networks have di�erences in router software and hardware (response

time, queue length, processing speed etc). For simplicity, W is the same for all routers

however. With these de�nitions, world utility is given by

G(�) =
P

t;r zr(t) Vr(Zr(t))

=
P

t;r;d xr;d(t)Vr(Zr(t))

=
P

t;r;d xr;d(t)Vr(
P

d0 Xr;d0(t)) :

Our equation for G explicitly demonstrates that, as claimed above, in our represen-

tation we can expressG(�) as a sum of rewards,
P

tRt(� ;t), where R(�;t) can be written as

function of a pair of (r; d)-indexed vectors: Rt(xr;d(t);Xr;d(t)) =
P

r;d xr;d(t)Vr(
P

d0 Xr;d0(t)).

Also as claimed, the Rt are temporal translations of one another.

Given this model, some of the components of �
;t
must be identi�ed with the values

xr;d;r0(t) 8 r; d; r0 and t, since those are the actions we will take. Since all arguments

of G must be components of �, we also include the Xr;d(t) 8r; d; t as components of

�
;t
. (We could use the fZr(t)g as an alternative, but this would provide a \coarser"

WLU; see below.) Formally, for routing based on ML agents, other variables must also

be included in �, to capture the (deterministically evolving) internal parameters used

by those agents to make their routing decisions. We won't have any need to explicitly

delineate such variables here however, and will mostly phrase the discussion as though

there were no such internal parameters.

Now the values fxr;d;r0(t�1)g 8r; d; r0 specify the values fxr;d(t)g 8r; d directly. How-

ever the decisions of each router's algorithm at all times t is a �xed function of the

fxr;d(t � 1)g and the fZr(t � 1) =
P

d0 Xr;d0(t � 1)g, a function given by the routing

algorithm which is implicitly encapsulated in the dynamical laws governing the sys-

tem. So in point of fact we can map the set of fxr;d;r0(t � 1)g 8r; d; r0 to the full set

fxr;d;r0(t)g 8r; d; r
0, not just to fxr;d(t)g. Accordingly, the xr;d;r0 undergo deterministic

evolution. Since their values across time set all the values of the Xr;d(t) across time, we

see that the entire set of the components of �
;t
undergo deterministic evolution in this

representation, as required.

For evaluating the wonderful life utility we will need to group the components of �
;t

into disjoint nodes �. Here we will have two types of node, both types being indexed

by router-destination pairs. For each such node index (r; d), the �rst node type is the

variable Xr;d(t), and the second node type is the Euclidean vector with components

indexed by r0, (xr;d)r0(t). In setting \actions" we are concerned with setting the states

of the nodes of the second type. Accordingly, our learners will all be associated with

6Note that in our model, the costs are accrued at the routers, not the links. Also note that for

simplicity we do not physically instantiate the cost as a temporal delay in crossing a router.
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nodes of this second type. Unless explicitly indicated otherwise, from now on we will

implicitly have that second type of node in mind whenever we refer to a \node" or use

the symbol �.

At time step t, ISPA has access to all the windowed loads at time step t� 1 (i.e., it

has access to Zr(t � 1) 8r), and assumes that those values will remain the same at all

times � t. (Note that for large window sizes and times close to t, this assumption is

arbitrarily accurate.) Using this assumption, in ISPA, each router sends packets along

the path that it calculates will minimize the costs accumulated by its packets.

3.3 COIN Routing

Based on the COIN formalism presented in Section 3.1 and the model described above,

we now present the COIN-based routing algorithms.

To evaluate the WLU for a node (r; d) at any time � , we must estimate the (primary

members of the) associated e�ect set. This means determining what components of �
;

will, under the dynamics of the system, be changed by altering any of the components

of the vector xr;d(�).

As a �rst approximation, we will ignore e�ects that changing xr;d(�) may have that

are \mediated" by the learning algorithms running in the system. That is, we ignore

changes that arise due to the the e�ects of changing xr;d(�) on rewards, changes which

induce changes in future training sets, which then in turn get mapped to changes in

the fxr;d;r0(t)g (and therefore the fXr;d(t)g) via the learning algorithms running on the

nodes.

As another approximation, we will ignore e�ects mediated by the routing algorithms'

observations of the state of the network. That is, we ignore changes in the fxr00;d0;r000(t)g

that varying xr;d(�) may cause due to (r00; d0)'s routing algorithm perceiving a di�erent

state of the network and modifying its routing decisions accordingly. We only consider

the behavior of those routing algorithms that are (potentially) directly a�ected by xr;d(�)

in that they (potentially) have to route packets that, at time � , passed through r on the

way to d. So in particular we ignore e�ects of xr;d(�) on the fxr00;d0 6=d;r000(t).

Since all packets routed in a wave arrive at their destinations by the end of the wave,

these approximations mean that the only xr00;d00;r000(t) that are in our estimate for xr;d(�)'s

e�ect set have t in the same wave as � . (These are the only ones that are, potentially,

directly a�ected by the fxr;d;r0(t)g by \chaining together" the sequence of xr00;d00;r000(t)

that get the packets in xr;d(t) to their ultimate destination.) Due to the wave nature of

our simulations though, the only xr00;d00;r000(t) within � 's wave that are a�ected by xr;d(�)

all have d00 = d. For reasons of coding simplicity, we do not concern ourselves whether

t < � within a given wave and then exclude some xr00;d00;r000(t) accordingly. In other

words, all t within � 's wave are treated equally.

So one set of members of xr;d(�)'s e�ect set is fxr00;d;r000(t) 8r
00; d; r000; t 2 �(�)g. Note
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that some of these members will be relatively una�ected by xr;d(�) (e.g., those with r00

far in the net away from r). Again for simplicity, we do not try to determine these

and exclude them. As with keeping the xr00;d;r000(t < �), this inclusion of extra nodes

in our estimate of the e�ect set should hurt learnability, but in general should not hurt

factoredness. Therefore it should delay how quickly the learners determine their optimal

policies, but it won't a�ect how the quality (for G) of those polices �nally arrived at.

Note also that trying to determine whether some particular xr00;d;r000(t 2 �(�)) should be

included in xr;d(�)'s e�ect set would mean, in part, determining whether packets routed

from (r; d) would have reached r00 if (r; d) had made some routing decision di�erent from

the one it actually made. This would be a non-trivial exercise, in general.

In contrast to the case with the xr00;d0;r000(t), there are Xr00;d0(t) with t in the future

of � 's wave that both are a�ected by xr;d(t) and also are not excluded by any of our

approximations so far. In particular, the Xr00;d(t) with either r00 = r or r00 one hop away

from r will be directly a�ected by xr;d(t), for t 2 [W�1
i=0 �(� + iL)) (cf. the de�nition

of the X variables). For simplicity, we restrict consideration of such Xr00;d variables to

those with the same router as r, r00 = r.

This �nal estimate for the e�ect set is clearly rather poor | presumably results better

than those presented below would accrue to use of a more accurate e�ect set. However

it's worth bearing in mind that there is a \self-stabilizing" nature to the choice of e�ect

sets, when used in conjunction with e�ect set WLU's. This nature is mediated by the

learning algorithms. If I take two nodes and give them the same utility function, then

the reward one node gets will be determined in part by what the other one does. So as

it modi�es its behavior to try to increase its reward, that �rst node will be modifying

its behavior in a way dependent on what the other node does. In other words, if two

nodes are given the same WLU because they are estimated to be in each other's e�ect

set, then ipso facto they will be in each other's e�ect set.

Using our estimate for the e�ect set, the WLU for (�; �) is given by the di�erence

between the total cost accrued in � 's wave by all nodes in the network and the cost

accrued by nodes when all nodes sharing �'s destination are \erased." More precisely,

any node � that has a destination d will have the following e�ect set WLU's, g�;� :

g�;� (�)= G(�)�G(CL
C
eff

(�;�)

(�))

=
X
t;r0;d0

xr0;d0(t) Vr0

 X
d0

Xr0;d0(t)

!
�
X
t;r0;d0

�
xr0;d0(t)(1 � I(t 2 �(�))I(d0 = d))

�

� Vr0

 X
d00

[ Xr0;d00(t) (1� I(t 2 [W�1
i=0 �(� + iL))I(d00 = d)) ]

!

=
X

t2�(�)

X
r0

0
@X

d0

xr0;d0(t) Vr0(
X
d00

Xr0;d00(t)) �
X
d0 6=d

xr0;d0(t) Vr0(
X
d00 6=d

Xr0;d00(t))

1
A
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+
X

t2[W�1
i=1

�(�+iL)

X
r0

0
@X

d0

xr0;d0(t) [Vr0(
X
d00

Xr0;d00(t))� Vr0(
X
d00 6=d

Xr0;d00(t))]

1
A (7)

where I(:) is the indicator function that equals 1 if its argument is true, 0 otherwise.

To allow the learner to receive feedback concerning its actions in a wave immediately

following that wave rather than wait for � WL time steps, we will approximate the

second sum in that last equality, the one over times following � 's wave, as zero. There

is another way we can view the resultant expression, rather than as an approximation

to the e�ect set WLU. That is to view it as the exact WLU of an approximation to the

e�ect set, an approximation which ignores e�ects on future windowed loads of clamping

a current tra�c level. Regardless of what view we adopt, presumably better performance

could be achieved if we did not implement this approximation.

Given this approximation, ourWLU becomes a wave-indexed time-translation-invariant

WL \reward function" (WLR):

g�;� (� ;t2�(�)) =
X

t2�(�);r0

 X
d0

xr0;d0(t) Vr0(
X
d00

Xr0;d00(t))

�
X
d0 6=d

xr0;d0(t) Vr0(
X
d00 6=d

Xr0;d00(t))

1
A : (8)

Notice that tra�c going from a router r0 6= r to a destination d0 6= d a�ects the value of

the WLR for node (r; d). This reects the fact that WLR takes into account side-e�ects

of (r; d)'s actions on other nodes. Note also that each r0-indexed term contributing to the

WLR can be computed by the associated router r0 separately, from information available

to that router. Subsequently those terms can be propagated through the network to �,

in much the same way as routing tables updates are propagated.

Given this choice of private utility, we must next specify how the COIN-based routing

algorithm collects the initial data that (in conjunction with this utility) is to be used to

guide the initial routing decisions that every node with more than one routing option

must make. In our experiments that data was collected during a preliminary running

of an ISPA. In this preliminary stage, the routing decisions are made using the ISPA,

but the resulting actions are \scored" using the WLR given by Equation 7. 7 The data

collected in this stage provides us with initial input-output training sets to be used by

the machine learning algorithm on each node: for each router-destination node, inputs

are identi�ed with windowed loads on outgoing links, and the associated WLR values

for the destination in question are the outputs.

7We use the ISPA to generate the routing decisions in the initial data since it is likely in practice

that some kind of SPA will be the routing algorithm running prior to \turning on" the COIN algorithm.

Alternately one can generate the initial data's routing decisions by having the routers make random

decisions, or by having them implement a sequence of decisions that \sweeps" across a grid through the

possible set of actions.
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After su�cient initial data is collected using the ISPA, the system switches to using

the COIN algorithm to make subsequent routing decisions. In this stage, each node

routes packets along the link that it estimates (based on the training set) would provide

the best WLR. To perform the estimation, the MB COIN makes use of a single-nearest-

neighbor algorithm as its learner. This algorithm simply guesses that the output that

would ensue from any candidate input is the same as the output of the element of

the training set that is the nearest neighbor (in input space) of that candidate input.8

In other words, the learner �nds the training set input-output pair whose input value

(loads on outgoing links) is closest to that which would result from each potential routing

decision. Then the learner assigns the WLR associated with that training data pair as

the estimate for what WLR would result from said routing decision. These WLR values

are then used to choose among those potential routing decisions. The input-output data

generated under this algorithm is adding to the training set as it is generated.

In this routing algorithm, the routers only estimate how their routing decisions (as

reected in their loads at individual time steps) will a�ect their WLR values (based on

many nodes' loads). It is also possible to calculate exactly how the routing decisions a�ect

the routers' WLR's if, unlike the MB COIN, we had full knowledge of the loads of all

nodes in the system. In a way similar to ISPA, for each router we can evaluate the exact

WLR value that would ensue from each of its candidate actions, under the assumption

that windowed loads on all other routers are the same one wave into the future as they

are now. We call this algorithm for directly maximizing WLR (an algorithm we call the

full knowledge COIN (FK COIN)).

Note that under the assumption behind the FK COIN, the action � chooses in wave

�(�) that maximizes WLR will also maximize the world reward. In other words, WL

reward is perfectly factored with respect to (wave-indexed) world reward, even though

the associated utilities are not related that way (due to inaccuracy in our estimate of the

e�ect set). Due to this factoredness, the FK COIN is equivalent to load balancing on

world rewards. Since LB in general results in inferior performance compared to LB over

time, and since the FK COIN is equivalent to LB, one might expect that its performance

is suboptimal. Intuitively, this suboptimality reects the fact that one should not choose

the action only with regard to its e�ect on current reward, but also with concern for the

reward of future waves. In the language of the COIN framework, this suboptimality can

be viewed as a restatement of the fact that for our inexactly estimated e�ect set, the

system will not be perfectly factored.

The learning algorithm of the MB COIN as described is extraordinarily crude. In

addition, the associated scheme for choosing an action is purely exploitative, with no

exploration whatsoever. Rather than choose some particular more sophisticated scheme

and tune it to �t our simulations, we emulated using more sophisticated algorithms in

8This is a very simple learning algorithm, and we use it here only to demonstrate the potential

practical feasibility of a COIN-based routing algorithm. The performance can presumably be improved

if more sophisticated learning algorithms (e.g., Q-learning [23, 24]) are used.
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general. We did this by modifying the MB COIN algorithm to occasionally have the FK

COIN determine a router's action rather than the purely greedy learner outlined above.

The steering parameter discussed in Section 4.5 determines how often the routing

decision is based on the MB COIN as opposed to the FK COIN.

4 SIMULATION RESULTS

Based on the model and routing algorithms discussed above, we have performed simula-

tions to compare the performance of ISPA and MB COIN across a variety of networks,

varying in size from �ve to eighteen nodes. In all cases tra�c was inserted into the

network in a regular, non-stochastic manner at the sources. The results we report are

averaged over 20 runs. We do not report error bars as they are all lower than 0:05.

In Sections 4.1 - 4.4 we analyze tra�c patterns over four networks where ISPA su�ers

from the Braess' paradox. In contrast, the MB COIN almost never falls prey to the

paradox for those networks (or for no networks we have investigated is the MB COIN

signi�cantly susceptible to Braess' paradox). Then in Section 4.5 we discuss the ef-

fect on the MB COIN's performance of the \steering" parameter which determines the

intelligence of the MB COIN.9

4.1 Bootes Network

The �rst network type we investigate is shown in Figure 3. It is in many senses a trivial

network. (Indeed, in Net A, the sources do not even have any choices to make.) The

loads introduced at the sources do not change in time and are listed in Tables 1 and 2,

along with the performances of our algorithms.
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Figure 3: Bootes Network

The MB COIN results are identical to the ISPA results in the absence of the additional

link (Network A). However, Braess' paradox arises with ISPA, in that the addition of the

9In Sections 4.1 - 4.4, the steering parameter is set at 0.5.
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Table 1: Average Per Packet Cost for BOOTES2 networks for V1 = 10 + log(1 +

x) ; V2 = 4x2 ; V3 = log(1 + x) .

Loads at (S1; S2) Net ISPA MB COIN

1,1 A 6.35 6.35

B 8.35 5.93

2,1 A 8.07 8.07

B 10.40 7.88

2,2 A 9.55 9.55

B 10.88 9.71

4,2 A 10.41 10.41

B 11.55 10.41

Table 2: Average Per Packet Cost for BOOTES4 network for V1 = 50+log(1+x) ; V2 =

10x ; V3 = log(1 + x) .

Loads at (S1; S2) Net ISPA MB COIN

1,1 A 30.35 30.35

B 20.35 20.35

2,2 A 35.55 35.55

B 40.55 34.99

4,2 A 41.07 41.07

B 50.47 44.13

6,3 A 44.63 44.63

B 51.40 44.63

new link in network B degrades the performance of the ISPA in six of the eight tra�c

regimes and load-to-cost functions investigated. The MB COIN on the other hand is

only hurt by the addition of the new link once, and manages to gainfully exploit it

seven times. (When behavior is analyzed in�nitesimally, the MB COIN either uses the

additional link e�ciently or chooses to ignore it in those seven cases.) Moreover, the

MB COIN's performance with the additional link is always better than the ISPA's. For

example, adding the new link causes a degradation of the performance by as much as 30

% (loads = f2; 1g) for the ISPA, whereas for the same load vector MB COIN performance

improves by 7 %.

4.2 Hex Network

In this section we revisit the network �rst discussed in Section 2.1 (redrawn in Figure 4 to

include the dummy nodes). In Table 3 we give full results for the load-to-delay functions

discussed in that section. We then use load-to-cost functions which are qualitatively
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similar to those discussed in Section 2.1, but which incorporate non-linearities that better

represent real router characteristics. That load-to-cost function and associated results

are reported in Table 4.
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Figure 4: Hex network

This network demonstrates that while the addition of a new link may be bene�cial

in low tra�c cases, it leads to bottlenecks in higher tra�c regimes. For ISPA although

the per packet cost for loads of 1 and 2 drop drastically when the new link is added,

the per packet cost increases for higher loads. The MB COIN on the other hand uses

the new link e�ciently. Notice that the MB COIN's performance is slightly worse than

that of the ISPA in the absence of the additional link. This is caused by the MB COIN

having to use a learner to estimate the WLU values for potential actions whereas the

ISPA simply has direct access to all the information it needs (costs at each link).

Table 3: Average Per Packet Cost for HEX network for V1 = 50 + x ; V2 = 10x ; V3 =

10 + x .

Load Net ISPA MB COIN

1 A 55.50 55.56

B 31.00 31.00

2 A 61.00 61.10

B 52.00 51.69

3 A 66.50 66.65

B 73.00 64.45

4 A 72.00 72.25

B 87.37 73.41

4.3 Buttery Network

The next network we investigate is shown in Figure 5. It is an extension to the simple

network discussed in Section 4.1. We now have doubled the size of the network and have
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Table 4: Average Per Packet Cost for HEX network for V1 = 50 + log(1 + x) ; V2 =

10x ; V3 = log(1 + x) .

Load Net ISPA MB COIN

1 A 55.41 55.44

B 20.69 20.69

2 A 60.69 60.80

B 41.10 41.10

3 A 65.92 66.10

B 61.39 59.19

4 A 71.10 71.41

B 81.61 69.88

three sources that have to route their packets to two destinations (packets originating at

S1 go to D1, and packets originating at S2 or S3 go to D2). Initially the two halves of the

network have minimal contact, but with the addition of the extra link two sources from

the two two halves of the network share a common router on their potential shortest

path.
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Figure 5: Buttery Network

Table 5 presents two sets of results: �rst we present results for uniform tra�c through

all three sources, and then results for asymmetric tra�c. For the �rst case, the Braess'

paradox is apparent in the ISPA: adding the new link is bene�cial for the network at low

load levels where the average per packet cost is reduced by nearly 20%, but deleterious

at higher levels. The MB COIN, on the other hand, provides the bene�ts of the added

link for the low tra�c levels, without su�ering from deleterious e�ects at higher load

levels.

For the asymmetric tra�c patterns, the added link causes a drop in performance for

the ISPA, especially for low overall tra�c levels. This is not true for the MB COIN.

Notice also that in the high, asymmetric tra�c regime, the ISPA performs signi�cantly

worse than the MB COIN even without the added link, showing that a bottleneck occurs
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Table 5: Average Per Packet Cost for BUTTERFLY network for V1 = 50 + log(1 +

x) ; V2 = 10x ; V3 = log(1 + x).

Loads (S1; S2; S3) Net ISPA MB COIN

1,1,1 A 112.1 112.7

B 92.1 92.3

2,2,2 A 123.3 124.0

B 133.3 122.5

4,4,4 A 144.8 142.6

B 156.5 142.3

3,2,1 A 81.8 82.5

B 99.5 81.0

6,4,2 A 96.0 94.1

B 105.3 94.0

9,6,3 A 105.5 98.2

B 106.7 98.8

on the right side of network alone (similar to the Braess' paradox observed in Section 4.1).

4.4 Ray Network

In all the networks and tra�c regimes discussed so far the sources are the only routers

with more than one routing option. The �nal network we investigate is a larger network

where the number of routers with multiply options is signi�cantly higher than in the

previous networks. Figure 6 shows the initial network (Net A) and the \augmented"

network (Net B), where new links have been added. The original network has relatively

few choices for the routers, as packets are directed toward their destinations along \con-

duits." The new links are added in the augmented networks to provide new choices

(crossing patterns) that could be bene�cial if certain of the original conduits experience

large costs.

Table 6 shows the simulation results for these networks (S1 and S2 send packets to D1

and D2 respectively). At low load levels both the ISPA and the MB COIN use the new

links e�ectively, although the MB COIN performs slightly worse. This is mainly caused

by the di�culty encountered by the simple learner (single nearest neighbor algorithm)

in quickly learning the tra�c patterns in this large network. Unlike the ISPA however,

the MB COIN avoids the Braess' paradox in all cases except the very high tra�c regime.

Moreover, even there, the e�ect is signi�cantly milder than that encountered by the

ISPA.

23



yS1e
e
e
e

yS2%
%
%
%yV3 J

J
J
J










yV3J
J
J
J










yV1 yV2 yV2 yV1

yV0 yV0 yV0 yV0

yV2 "
"
"
"
"

yV1 "
"
"
"
"

yV1b
b

b
b

b

yV2b
b

b
b

b
yD1

yD2

yS1e
e
e
e

yS2%
%
%
%yV3 J

J
J
J










yV3#
#
#
#
#

yV3J
J
J
J










yV3c
c

c
c

c
yV1 yV2c

c
c

c
c

yV2#
#
#
#
#

yV1

yV3 yV3
yV0 yV0 yV0 yV0

yV2 "
"
"
"
"

yV1 "
"
"
"
"

yV1b
b

b
b

b

yV2b
b

b
b

b
yD1

yD2

Net A Net B
Figure 6: Ray network

Table 6: Average Per Packet Cost for RAY network for V1 = 50 + log(1 + x) ; V2 =

10x ; V3 = 10 + log(1 + x).

Loads at S1andS2) Net ISPA MB COIN

2,2 A 143.6 143.7

B 124.4 126.9

3,3 A 154.6 154.9

B 165.5 151.0

4,4 A 165.4 166.0

B 197.7 165.6

6,6 A 186.7 187.4

B 205.1 191.6

4.5 Steering the MB COIN

The �nal aspect of COIN-based routing we investigate is the impact of the choice for the

value of the steering parameter. This parameter both controls the amount of exploration

the algorithm performs and determines the \intelligence" of the MB COIN at estimating

the surface directly calculated by the FK COIN. In Figure 7 we provide results when

the steering parameter is set to 1:0 so that the MB COIN reduces to FK COIN. This

provides an upper bound on the performance that the MB COIN could achieve if it used

no exploration.

For the HEX network (Figure 7(a)), the performance at the worst setting for the

MB COIN, which corresponds to no steering, is comparable to ISPA. In contrast, with

moderate steering (0.5) the results are similar to that of the FK COIN, as the learner

has more information to work with (arising from the extra parts of the input space
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Figure 7: Impact of switching.

represented in the training set due to the occasional use of the FK COIN), it bridges

the gap between a suboptimal algorithm susceptible to Braess' paradox and one which

e�ciently avoids that paradox.

For the RAY network (Figure 7(b)), the value of the steering parameter is more

critical. With no steering at all, the MB COIN performs poorly in this network | even

worse than ISPA. This is not surprising in that because there are many routing choices

that a�ect the performance, the simple memory-based learner needs proper \seeding" to

be able to perform well. In any case, with the addition of steering the MB COIN quickly

outperforms the ISPA.

Finally, for both the Buttery and Bootes networks (Figures 7(c) - 7(d)) the MB

COIN needs very little steering to perform well. Although for the Buttery network the

performance of MB COIN improves slightly with more information, it is signi�cantly
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better than the ISPA across the board.

5 CONCLUSION

E�ective routing in a network is a fundamental problem in many �elds, including data

communications and transportation. Shortest path algorithms provide an elegant so-

lution to this problem, but under certain circumstances su�er from less than desirable

e�ects. One such e�ect is Braess' paradox, where increased capacity results in lower over-

all throughput for shortest path algorithms due to the potentially harmful side-e�ects of

the decisions made by such algorithms. Even a full-blown load-balancing can su�er from

such side-e�ects , since in general they extend across time as well as space, whereas, load

balancing ignores temporal side-e�ects.

Collective Intelligence is a novel way of controlling distributed systems so as to avoid

the deleterious side-e�ects. In a COIN, the central issue is in determining the personal

objectives to be assigned to the components of the system. One wants to choose those

goals so that the greedy pursuit of those goals by the components of the system leads to

a globally desirable solution. We have summarized COIN theory and derived a routing

algorithm based on that theory. In our simulations, the ISPA induced average costs

as much as 32 % higher than the COIN-based algorithm. This was despite the ISPA's

having access to more information than the MB COIN. Furthermore the COIN-based

algorithm avoided the Braess' paradoxes that seriously diminished the performance of

the ISPA.

In the work presented here, the COIN-based algorithm had to overcome severe limi-

tations. Firstly, the estimation of the e�ect sets used were exceedingly poor. Secondly,

the learners were particularly simple-minded, and therefore were not able to e�ectively

maximize their performance. That a COIN-based router with such serious limitations

consistently outperformed an ideal shortest path algorithm demonstrates the strength of

the proposed method.

We are currently investigating novel utilities that are more \learnable" for the routers

as well as expand the simulations to larger networks using a commercial event driven

simulator. Future work will focus on not making the approximation that current tra�c

levels do not a�ect future windowed loads (Equation 7). It will also involve investigating

better estimates of e�ect sets, in particular not including all nodes with the same desti-

nation in one's e�ect set, and more generally using a more "�ne-grained" representation

of the nodes, for example including each packet's originating source, to allow a more

�ne-grained e�ect set (and resultant WLU).
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